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Indeterministic Objects in the Category of Effect
Algebras and the Passage to the Semiclassical Limit

Artur E. Ruuge1,2

We consider a category of effect algebras and formulate an abstract-hidden variables
problem for an object of this category. A notion of indeterministic object is introduced as
of an object which induces a Kochen–Specker-type contradiction. A sufficient condition
for an object to be indeterministic is derived. An abstract algebraic point of view on a
no-hidden variables example constructed by Mermin is given. The notion of a passage
to the semiclassical limit is analyzed and refined.
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1. INTRODUCTION

Quantum theory can be viewed as a mathematical formalism providing a
framework for the construction of probabilistic models for certain types of phys-
ical experiments. The “unusual” or the “contradicting common sense” properties
of quantum theory arise mainly from the fact that it admits incompatible measure-
ments. The aim of the current article is to analyze some general implications of the
incompatibility of measurements for the mathematical formalism of an abstract
physical theory.

From the very beginning, it is necessary to point out, that we are not going to
discuss a metaphysical problem of constructing some “objective reality” that stands
behind an experimental data. That is why we avoid such notions like properties and
states of a physical system (and by that the notion of a physical system itself), and
deal with the problem from the position of mathematical pragmatism. A measuring
device A is viewed as a “black box” with an indicator and there is a finite set
IA of all possible indications it can show. Naively, a description of a physical
experiment consists in the following. There is a set R of recipes of preparation
for an experiment and a set D of measuring devices. The set D is equipped with a
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relation K ⊂ D × D – the compatibility relation between the measuring devices.
Denote the set of all finite subsets ofD consisting of pairwise compatible devices as
P f
K(D). A description of what has been done in a given experiment is a pair (U, R) ∈

P f
K(D) × R. A description of what is the outcome of an experiment with (U, R) is

an element φ ∈ OU of a direct product OU := �A∈U IA. Consider a disjoint union
T := �U∈P f

K(D)OU and for every U ∈ P f
K(D) denote by iU : OU � T the natural

injection.
Imagine that one has a sample series of experiments Z . For every (U, R) ∈

P f
K(D) × R denote by ZU, R ⊂ Z a subset of all the experiments which have

a recipe of preparation R and involve a set of measuring devices U . For every
φ ∈ OU extract from this set a subset Zφ

U, R ⊂ ZU, R of all the experiments with an
outcome φ. If #ZU, R 	= 0 one may consider a quantity #Zφ

U, R/#ZU, R – the relative
frequency of an outcome φ corresponding to (U, R). One assumes that for every
(U, R) this quantity has a limit as the number #ZU, R → ∞. We shall call this limit
the expected relative frequency. It means that there exists a function

F(·|·) : T × R → [0, 1], (T , R) �→ F(T |R),

such that F(iU (φ)|R) has a meaning of the expected relative frequency of an
outcome φ ∈ OU corresponding to (U, R) ∈ P f

K(D) × R.
One can naturally define equivalence relations on the sets T and R: R1, R2 ∈

R are declared to be equivalent iff ∀T ∈ T one has F(T |R1) = F(T |R2); T1, T2 ∈
T are declared to be equivalent iff ∀R ∈ R one has F(T1|R) = F(T2|R). Denote
the factorizations of T and R with respect to these equivalence relations as D and
� respectively. The function F induces a function

�(·|·) : D × R → [0, 1], (P, S) �→ �(P | S).

The triple (D, R, �) should play a key role in all the theory.
The Hilbert space formalism of quantum mechanics allows an element P ∈ D

to be identified with an orthogonal projector π̂P onto some closed linear manifold
in the Hilbert space H associated to the physical system. Every element S ∈ R is
then identified with a self-adjoint non-negative operator ρ̂S with a unit trace, and
the value �(P|S) is given by the formula �(P|S) = T r (̂ρSπ̂P ). One may try to
think that two equivalent T1, T2 ∈ T correspond to “looking at the same property”
of a physical system, and that two equivalent R1, R2 ∈ R correspond to “creating
the same state” in a physical system. As was already mentioned, we avoid the
notions of states and properties. The reason is that we focus the attention on the
notion of incompatibility of measuring devices without giving a cause for the
assertions like “a physical system does not have a property before it is measured,”
“a physical system can exist in two states at one time,” etc., which seem absurd.

Consider an example illustrating incompatibility. Let A, B, and C denote three
measuring devices with sets of possible indications IA, IB, and IC respectively.
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Assume, that A is compatible with B and with C, but B is not compatible with C.
This is illustrated by the diagram:

In this case it is impossible to organize an experiment with a simultaneous mea-
surement of A, B, and C. Nevertheless, one is tempted to speculate about the
following. It seems natural to think, that every experiment splits into two stages:
(1) preparation process and (2) measurement process. In this case the experimen-
tator may decide what to measure after performing a preparation. Suppose, for
example, that in some experiment one has measured {A, B} and has obtained an
outcome (a, b) ∈ IA × IB. Imagine, that the experimentator could go back in time
to the moment between the two stages of this experiment and change his decision
about what to measure from {A, B} to {A, C}. Then he would obtain some indica-
tions a′ and c′ for the devices A and C respectively. It seems natural to think, that
he must get a′ = a. This leads to an idea, that a result of every preparation pro-
cess should be described by (a, b, c) ∈ IA × IB × IC. On the other hand, without
the “traveling in time” one can extract only a part of (a, b, c) via a measurement
process. This leads to the question: given a series of experiments Z , is it possi-
ble to derive some knowledge about the “probability” to have (a, b, c) as a result
of a preparation R ∈ R from the knowledge of all possible relative frequencies?
Of course, it is necessary to clarify mathematically what the word “probability”
means here. For example, is it possible to write some inequalities for this quantity,
based on the knowledge of all possible binary relative frequencies? As will be
shown in subsequent sections, the analysis of this sort of questions reduces to an
abstract-hidden variables problem. The term “hidden variables” was introduced
by D. Bohm in (Bohm, 1952). J. von Neumann analyzed this problem in his book
(von Neumann, 1955). Better versions of “no-hidden variables” theorems were
obtained by Bell (1966) and Kochen and Specker (1967). A modern point of view
on Kochen–Specker theorem based on topos theory can be found in Isham and
Butterfield (1998), Butterfield and Isham (1999, 2002),and Hamilton et al. (2000).
For a detailed analysis of the foundations of quantum theory one can refer, for
example, to Aerts et al. (1999) and Omnès (1988a,b,c, 1989).

2. CONTRADICTION WITH COMMON SENSE

In this section we would like to give an example that shows the importance
of the notion of incompatibility. We continue to use the notations from the intro-
duction. Suppose that one considers a subset of D consisting of four measuring
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devices A1, B1, A2, B2 ∈ D such that each of the devices has only two possible
indications: 0 and 1. Assume, that the relations of compatibility are described by
the diagram:

(1)

It implies that working with these devices one may only consider experiments,
which involve a single measuring device Ai or B j , or a pair of devices of the
form {Ai , B j } (i, j = 1, 2). The listed variants correspond to all the completely
connected subcomponents of the graph. Let A(µ)

i ∈ D denote an image of (µ) ∈
O{Ai } under the composition of natural maps O{Ai } � T and T � D. Introduce
similar notations B(ν)

j , (AB)(µ,ν)
i, j ∈ D for the images of (ν) ∈ O{B j } and (µ, ν) ∈

IAi × IB j = O{Ai ,B j } respectively (i, j = 1, 2; µ, ν = 0, 1).
The function � : D × R → [0, 1] defining the expected relative frequencies

is not arbitrary. In particular, it has to satisfy for every S ∈ R the following con-
ditions: ∑

µ′=0,1

�
(
A(µ′)

i

∣∣S) = 1,
∑

ν ′=0,1

�
(
B(ν ′)

j

∣∣S) = 1,

and

�
(
A(µ)

i

∣∣S) = ∑
ν ′=0,1 �

(
(AB)(µ,ν ′)

i, j

∣∣S)
,

�
(
B(ν)

j

∣∣S) = ∑
µ′=0,1 �

(
(AB)(µ′,ν)

i, j

∣∣S)
,

where i, j = 1, 2; µ, ν = 0, 1. Note, that there are similar formulas (the normal-
ization and consistency conditions) for every U ∈ P f

K(D).
For every S ∈ R we have a function �(·|S) : D → [0, 1]. One can put the

following general question: what is possible to say about the set of all functions of
the form �(·|S) obtained as S runs over the entire R? It may seem natural, that for
every S ∈ R a function �(·|S) can be treated as a probability measure. We give
an example that shows that this doesn’t have to be the case.

Assume that there exists S ∈ R and the four devices mentioned above such
that one has: �(A(1)

1 |S) = �(A(1)
2 |S) = 1/2, �(B(1)

1 |S) = �(B(1)
2 |S) = 1/2 and �

((AB)(1,1)
1,1 |S) = 1/8, �((AB)(1,1)

1,2 |S) = �((AB(1,1)
2,1 |S) = 3/8, �((AB)(1,1)

2,2 |S) = 1/2.
It will be shown below that in quantum mechanics this assumption can be fulfilled.
The rest of the values can be found from the normalization and consistency con-
ditions. This gives �(A(µ)

i |S) = �(B(ν)
j |S) = 1/2 and a Table I for �((AB)(µ,ν)

i, j |S)
(i, j = 1, 2 and µ, ν = 0, 1). Note, that all the calculated quantities fall into [0, 1].
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Table I. A Cell at the Intersection of the Row i j and the Column µν

Contains the Expected Relative Frequency �((AB)(µ,ν)
i, j |S)

00 01 10 11

11 1/8 3/8 3/8 1/8
12 3/8 1/8 1/8 3/8
21 3/8 1/8 1/8 3/8
22 1/2 0 0 1/2

Note, that the last line of the table creates an illusion of an existence of a conser-
vation law.

One is tempted to interpret these expected relative frequencies as proba-
bilities. It means, that one tries to think, that there exists a probability space
(�S , FS , PS) and events AS

1 , AS
2 , BS

1 , BS
2 ∈ FS , such that PS(AS

i ) = �(A(1)
i |S),

PS(BS
j ) = �(B(1)

j |S) and PS(AS
i BS

j ) = �((AB)(1,1)
i, j |S), where i, j = 1, 2. The ex-

pected relative frequency �(A(0)
i |S) will correspond to PS(AS

i ) and similarly �

(B(0)
j |S) will correspond to PS(BS

j ), i, j = 1, 2. As for the expected relative fre-
quencies with two measuring devices, one will have, for example,�((AB)(1,0)

1,2 |S) =
PS(AS

1 BS
2 ). The other entries of the table are converted into probabilities by

analogy.
Suppose the mentioned interpretation is right. Let us omit in what follows

the index S in notations AS
1 , AS

2 , BS
1 , BS

2 and PS . Then the normalization and con-
sistency conditions may be perceived as the implications of standard formulas of
probability theory: P(x) + P(x̄) = 1 and P(xy) + P(x ȳ) = P(x). Nevertheless,
such an interpretation contains a contradiction, which appears when one tries to
derive some implications about the events, which cannot be seen in the experiment.
Namely, consider the probabilities P(A1 B1 A2 B2) and P(A1 B1 A2 B2). Applying
the two formulas from probability theory mentioned above and taking into account
that P(x) ≥ 0, one obtains the following inequalities:

P(A1 B1 A2 B2) = P(A1 B1) − P(A1 B1 A2 B2) − P(A1 B1 A2 B2)

−P(A1 B1 A2 B2) ≥ 0,

P(A1 B1 A2 B2) = P(A2 B2) − P(A1 B1 A2 B2) − P(A1 B1 A2 B2) − P(A1 B1 A2 B2)

= P(A2 B2) − P(B1 A2 B2) − P(A1 A2 B2) + P(A1 B1 A2 B2) ≥ 0.

Note, that P(A1 B1 A2 B2) enters these two inequalities with different signs. Ex-
pressing this term, one gets

P(A1 B1 A2 B2) ≤ P(A1 B1) − P(A1 B1 A2 B2) − P(A1 B1 A2 B2),

P(A1 B1 A2 B2) ≥ −P(A2 B2) + P(B1 A2 B2) + P(B1 A2 B2).
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Denote the right-hand side of the first inequality as α and the right-hand side
of the second inequality as β. The contradiction between the two inequalities
arises iff α < β (note, that a strict inequality is required). β can be
written as

β = −P(A2 B2) + [
P(B1 A2) − P(B1 A2 B2)

] + [
P(A1 B2) − P(A1 A2 B2)

]
.

Combining the term P(A1 B1 A2 B2), coming from α, with the term P(B1 A2 B2),
coming from β, and the term P(A1 B1 A2 B2), coming from α, with the term
P(A1 A2 B2), coming from β, one reduces α < β to the form

P(A1 B1 A2 B2) + P(A1 B1 A2 B2) < −P(A1 B1) − P(A2 B2) + P(B1 A2)

+ P(A1 B2).

Now, taking into account the inequality from the standard probability theory
P(xy) ≤ P(x), one obtains a sufficient condition for the contradiction between
the requirements P(A1 B1 A2 B2) ≥ 0 and P(A1 B1 A2 B2) ≥ 0:

min
{

P(A1 B1), P(A2 B2), P(B1 A2), P(A1 B2)
}

+ min
{

P(A1 B1), P(A2 B2), P(B1 A2), P(A1 B2)
}

< −P(A1 B1) − P(A2 B2) + P(B1 A2) + P(A1 B2). (2)

It turns out, that for the data described above, the inequality (2) really takes place:
0 < 1/8, giving rise to the mentioned contradiction.

The obtained contradiction implies that either the mentioned �(·|S) cannot
be treated as a probability measure, or the initial assumption about the existence
of S ∈ R with the required �(·|S) cannot be valid. Invoking the speculation at the
end of the introduction, one is inclined to accept the latter variant. Nevertheless the
surprising fact about quantum mechanics is that its mathematical formalism admits
a realization of �((AB)(µ,ν)

i, j |S) (i, j = 1, 2, µ, ν = 0, 1). It means that one has to
accept the first possibility. To persuade oneself in this, one can do the following.
Take any orthonormal basis {ϕ0, ϕ1} in C

2. Denote ψ0 = (ϕ0 − √
3ϕ1)/2, ψ1 =

(
√

3ϕ0 + ϕ1)/2, χ0 = (
√

3ϕ0 − ϕ1)/2, χ1 = (ϕ0 + √
3ϕ1)/2. Let � = (ϕ0 ⊗ ϕ∗

0 +
ϕ1 ⊗ ϕ∗

1 )/
√

2 ∈ C
2 ⊗ C

2 (the ∗ denotes the complex conjugation). Note, that �

does not depend on the choice of {ϕ0, ϕ1}. Let ρ̂ be an orthogonal projector onto
C�. Let â(µ)

1 = π̂ϕµ
⊗ id, â(µ)

2 = π̂ψµ
⊗ id, b̂(ν)

1 = id ⊗ π̂χν
and b̂(ν)

2 = id ⊗ π̂ψ∗
ν

(π̂ϕ denotes an orthogonal projector onto Cϕ, ϕ ∈ C
2). Using the formula for

the inner product (u ⊗ v , �) = (u, v∗)/
√

2 (where u, v ∈ C
2), one verifies that

T r (̂ρ â(µ)
i ) = T r (̂ρ b̂(ν)

j ) = 1/2 and that T r (̂ρâ(µ)
i b̂(ν)

j ) is equal to the ((i, j), (µ, ν))-
th entry of the Table I.
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3. HIDDEN VARIABLES PROBLEM

One may argue, that the contradiction described in the previous section, is de-
termined by the fact, that one tries to speculate about the events, such as A1 B1 A2 B2

and A1 B1 A2 B2, which cannot be observed in principle due to the restrictions im-
posed by the incompatibility of measuring devices (rf. (4)). One is tempted to
look at this fact in the following way. There exists some measurable space (�, F)
equipped with someσ -additive map P(·) : F → C (a C-valued measure) satisfying
P(�) = 1. Note, that P(·) is not required to be a map to [0, 1]. The set of measur-
ing devices {A1, A2, B1, B2} is injectively mapped into F in such a way, that for
every nontrivial event that one is able to observe in experiment (i.e. the events
Ai , Ai , B j , B j , Ai B j , Ai B j , Ai B j , and Ai B j , i, j = 1, 2) one gets a measure,
which belongs to [0, 1]. For other, “virtual” events, the measure can be any number.
(Note that the example considered in the previous section can really be inter-
preted this way: take � = {0, 1}4,F = P(�), Ai = {(α1, α2, β1, β2) ∈ �|αi = 1},
B j = {(α1, α2, β1, β2) ∈ �|β j = 1}, i, j = 1, 2; the assigning of values to P(�),
P(Ai ), P(B j ), and P(Ai B j ) gives a system of 9 linear equations with respect
to the measures of 16 points (α1, α2, β1, β2) ∈ �, which happens to have many
solutions). On the other hand, in general, the situation turns out to be more com-
plicated: it is possible to construct examples of experimental data for which the
measurable space does not exist at all.

In this section we shall formulate an abstract-hidden variables problem in
terms of homological algebra. Let D be a set equipped with some relation E and a
map · ⊕ · : E → D, (x , y) �→ x ⊕ y. Assume that the following conditions hold:

1) ∀(x , y) ∈ E : x ⊕ y = y ⊕ x .
2) ∀(x , y) ∈ E ∀z, (x ⊕ y, z) ∈ E : (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).
3) ∀x , y, z ∈ D, (x , y) ∈ E , (x , z) ∈ E : x ⊕ y = x ⊕ z ⇒ y = z.
4) ∃0 ∈ D ∀x ∈ D : x = x ⊕ 0.
5) ∃1 ∈ D ∀x ∈ D∃x∗ ∈ D : 1 = x ⊕ x∗.
6) ∀(x , y) ∈ E : x ⊕ y = 0 ⇒ x = 0 & y = 0.

Note, that the axioms imply, in particular, that D is not empty and that E is
a symmetric relation. Note, that if E = D × D, then (D; ⊕) is a commutative
monoid. One can show, that 0, 1, and x∗ (for every x) are defined in a unique way and
that 0∗ = 1 (the latter follows from 0 ⊕ 1 = 1). We shall refer to the data (D, E , ⊕)
satisfying these six axioms as to effect algebra. Note, that the term “effect algebra”
was suggested in Foulis and Bennett (1994). We use a slightly different, but an
equivalent set of axioms to the one formulated in the mentioned article. Note,
that the notion of effect algebra is close to the notion of orthoalgebra, which was
investigated in Foulis et al. (1992). It is convenient to introduce a category of effect
algebras C. Given an object X , one denotes the corresponding 0 and 1 elements as
0X and 1X and refers to them as to zero and unit elements for X respectively. The
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set of morphisms HomC(X1, X2) from an object X1 = (D1, E1, ⊕1) to an object
X2 = (D2, E2, ⊕2) is defined as follows. A morphism f : X1 → X2 is given by
the data consisting just of a map m : D1 → D2, which satisfies the conditions:

α) ∀(x , y) ∈ E1 : m(x ⊕ y) = m(x) ⊕ m(y), i.e. m : D1 → D2 induces a
map m̃ : E1 → E2 and the diagram

commutes.
β) m(1X1 ) = 1X2 .

The composition of two morphisms is given by the composition of the
corresponding maps. Note, that one does not require m(0X1 ) = 0X2 , since this
fact follows from other axioms. The requirement m(1X1 ) = 1X2 can be viewed
as a normalization condition. Note, that there exists a natural forgetful functor
f or : C → Set to the category of sets. Let us also mention, that the category C
admits direct products (this fact is to play its role in the context of the consistent his-
tories approach to quantum theory initiated in Griffits (1984); Omnès (1988); Gell-
Mann and Hartle (1992). Note, that the notion of orthoalgebra is used in the formu-
lation of the general formalism of consistent histories in Isham (1997) and Isham
and Linden (1994). If there is a family of objects, {Xt }t∈T , Xt = (Dt , Et , ⊕t ), T
is some index set, then there exists a direct product X = �t∈T Xt given by the
data X = (D, E , ⊕), D := �t∈T Dt , E := {({xt }t , {yt }t )|∀ t ∈ T : (xt , yt ) ∈ Et },
{xt }t ⊕ {yt }t := {xt ⊕t yt }t . For this X one will have 0X = {0Xt }t , 1X = {1Xt }t ,
({xt }t )∗ = {x∗

t }t .
Consider arbitrary X ∈ Ob(C) (Ob(C) denotes the class of objects in C), X =

(D, E , ⊕). One associates to ⊕ a relation � on D:

x � y ⇀↽ ∃x1 : x ⊕ x1 = y.

Proposition 3.1. For every object X = (D, E , ⊕) of C the following is true:

1) The relation � is a partial order on D.
2) The elements 0X and 1X play the roles of the minimal and maximal elements

of (D; �) respectively.
3) The operation x �→ x∗ is an involution on (D; �), i.e. ∀x ∈ D : x∗∗ = x

and ∀x , y ∈ D : x � y ⇔ y∗ � x∗.
4) The relation E can be represented as E = {(x , y)|x � y∗}.
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Proof: The proof of these facts is easy and follows directly from the axioms. We
give it only for the convenience of the reader.

1) Indeed, x � x , since x ⊕ 0X = x . Thus � is reflexive. If x � y and y � z,
then x ⊕ x1 = y and y ⊕ y1 = z for some y1, z1. Using associativity of
⊕, one gets z = (x ⊕ x1) ⊕ y1 = x ⊕ (x1 ⊕ y1). It follows, that x � z.
Thus � is transitive. Let us show now that � is antisymmetric. As-
sume x � y&y � x . It means, that x ⊕ x1 = y and y ⊕ y1 = x for some
x1, y1. It follows, that x ⊕ (x1 ⊕ y1) = x , and this gives x1 ⊕ y1 = 0X .
One concludes, that x1 = y1 = 0X . It follows, that x = y, and thus, � is
antisymmetric.

2) We have shown, that � is a partial order on D. 0X is a minimal element,
since for any x , 0X ⊕ x = x , i.e. 0X � x . 1X is a maximal element, since
for all x , one has x ⊕ x∗ = 1X , what implies, that x� 1X .

3) Take any x ∈ D. We have: x∗ ⊕ x∗∗ = 1X = x ⊕ x∗ ⇒ x∗∗ = x . Take
any x , y ∈ D and suppose x � y. It means, that x ⊕ x1 = y for some
x1. One has: (x ⊕ x1) ⊕ y∗ = y ⊕ y∗ = 1X . Using associativity of ⊕, one
gets x ⊕ (x1 ⊕ y∗) = 1X , i.e. x∗ = x1 ⊕ y∗. It means, that y∗ � x∗.

4) Denote E ′ := {(x , y)|x � y∗}. Let us show that E ⊂ E ′. Take any (x , y) ∈
E . One has (x ⊕ y) ⊕ (x ⊕ y)∗ = 1X . Using associativity and commuta-
tivity of ⊕, one gets (x ⊕ (x ⊕ y)∗) ⊕ y = 1X . On the other hand 1X =
y∗ ⊕ y. It means, that x ⊕ (x ⊕ y)∗ = y∗. It follows, that x � y∗, and thus
E ⊂ E ′. Let us show now, that E ′ ⊂ E . Take any (x , y), such that x�y∗.
Then ∃x1 : x ⊕ x1 = y∗. Since y ⊕ y∗ is well defined for any y, one has
(x ⊕ x1, y) ∈ E . According to the axioms of associativity and commuta-
tivity of ⊕, (x ⊕ x1) ⊕ y = x1 ⊕ (x ⊕ y). In particular, this implies, that
(x , y) ∈ E . �

Note, that the last axiom was necessary in the proof of antisymmetry of the
relation �. One calls � a standard partial order.

Proposition 3.2. Let f : X → Y be a morphism in C, given by a map m =
f or ( f ). It is claimed, that m respects the standard partial order and the involution,
i.e.,∀x ∈ f or (X ) : m(x∗) = m(x)∗, and∀x , y ∈ f or (X ) : x � y ⇒ m(x) � m(y).

Proof: Take any x . One has: 1Y = m(1X ) = m(x ⊕ x∗) = m(x) ⊕ m(x∗). ⇒
m(x∗) = m(x)∗.

Suppose x � y. It means, that x ⊕ x1 = y for some x1. One has: m(y) =
m(x ⊕ x1) = m(x) ⊕ m(x1). This implies, that m(x) � m(y). �

Let us give some examples of objects of the category C, which will play a
role in further sections.
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Example 3.1. Let H be a Hilbert space. Denote by L(H) the set of all closed
linear systems in H. Let E = {(P, Q) ∈ L(H) × L(H)|P⊥Q} and define ⊕ as
the closure of the linear span. The data (L(H), E , ⊕) defines and object in C, which
will be denoted as L(H).

Example 3.2. Let (�, F) be a measurable space. Let E be a relation on the σ -
algebra F , E = {(P, Q)|P ∩ Q = ∅}. The data (F , E , �) defines an object of C
which will be denoted as W(�, F).

Example 3.3. Denote by E a relation on [0, 1], E = {(α, β)|α + β ≤ 1}. The
data ([0, 1], E , +) defines an object of C which will be denoted as I. Note, that
every probability measure on (�, F) defines a morphism W(�, F) → I.

Let X ∈ Ob(C), X = (D, E , ⊕). It turns out that the existence of an involution
∗ on (D; �) allows to extend the quantum mechanical notion of compatibility to
any X .

Definition 3.4. Two elments x , y ∈ D are called compatible in X , if the following
conditions hold

1) ∃ inf{x , y} =: x ∧ y&∃ sup{x , y} =: x ∨ y.
2) The following formulas are valid:

(x ∧ y) ⊕ x∗ = y ⊕ (x ∨ y)∗,

(x ∧ y) ⊕ y∗ = x ⊕ (x ∨ y)∗.

Note, that (x ∨ y)∗ = x∗ ∧ y∗.

Proposition 3.3. Let H be a Hilbert space. Two elments P, Q ∈ L(H) are com-
patible in L(H) iff the orthogonal projectors π̂P and π̂Q on P and Q respectively
commute.

Proof: Let us first prove one general auxiliary fact. Let X = (D, E , ⊕) ∈ Ob(C)
and let x , y ∈ D be compatible. Define ξ and η from the formulae: x = ξ ⊕
(x ∧ y), y = η ⊕ (x ∧ y). One claims, that ξ � η∗. Indeed, let us define ξ1 from
y∗ = inf{x∗, y∗} ⊕ ξ1. It follows, that

inf{x , y} ⊕ y∗ = inf{x , y} ⊕ ξ1 ⊕ inf{x∗, y∗},
x ⊕ inf{x∗, y∗} = inf{x , y} ⊕ ξ ⊕ inf{x∗, y∗}.

Taking into account the definition of compatible elements and the property
sup{x , y}∗ = inf{x∗, y∗} (which is a general property for a partially ordered set
equipped with involution), one concludes, that ξ = ξ1. Similarly, if one defines
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η1 from x∗ = inf{x∗, y∗} ⊕ η1, one deduces, that η1 = η. Now, one has ξ�x and
η � x∗. It follows, that ξ�x�η∗. Thus ξ � η∗.

Note, that there exists a decomposition 1X = (x ∧ y) ⊕ ξ ⊕ η ⊕ (x ∨ y)∗.
Let us apply this result in the case of L(H). Assume P and Q are compatible

in L(H). One has the decompositions into orthogonal sums: P = L ⊕ U , Q =
L ⊕ V , where L = P ∩ Q = inf{P, Q}. U and V satisfy U ⊂ V ⊥, i.e., U ⊥ V . It
follows, that [π̂P , π̂Q] = 0. Thus the compatibility implies, that the corresponding
orthogonal projectors commute.

On the other hand, if [π̂P , π̂Q] = 0, then H admits a decomposition into
orthogonal sumH = L0 ⊕ L1 ⊕ L2 ⊕ L3, such, that P = L0 ⊕ L1 and Q = L0 ⊕
L2. From this one derives the two equalities required in the definition of compatible
elements of L(H). Since any two elements of f or (L(H)) have inf and sup (these
will be intersection and the closure of a linear span), one deduces, that P and Q
are compatible in the sense of the given definition. �

Note, that in the examples of W(�, F) and I, any two elements turn out to be
compatible. For W(�, F) the operations ∧ and ∨ become ∩ and ∪ respectively,
and the compatibility follows from the mutual distributivity of these operations.
In case of I one has x ∧ y = min{x , y} and x ∨ y = max{x , y}, x∗ = 1 − x and
the compatibility follows from the identity:

min{ξ , η} + (1 − ξ ) ≡ η + (1 − max{ξ , η}), (ξ , η ∈ R).

Proposition 3.4. For every object X = (D, E , ⊕) in C the following is true:

∀x , y ∈ D : x � y ⇒ x is compatible with y.

Proof: If x � y, then inf{x , y} = x and sup{x , y} = y. One has the equalities:

inf{x , y} ⊕ x∗ = x ⊕ x∗ = 1X = y ⊕ y∗ = y ⊕ sup{x , y}∗,

inf{x , y} ⊕ y∗ = x ⊕ y∗ = x ⊕ sup{x , y}∗.
It follows, that x is compatible to y in X . �

Note, that from this proposition one gets, that 0X and 1X are compatible with
any x .

We shall define now some subcategory C1 in C. An object Y in C1 will have the
properties, which allow to interpret f or (Y ) as a set of binary measuring devices
for an abstract physical system.

It is natural (for physical reasons), to think about the compatibility relation,
as of a relation, which satisfies the following conditions:

• If x is compatible with y, then x is compatible with y∗.
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• If x , y and z are pairwise compatible, then x is compatible with y ∧ z and
with y ∨ z.

Let us formulate what is required more precisely. Let X = (D, E , ⊕) be an object
of C. Denote

K := {(x , y) ∈ D × D|x is compatible with y},
PK (D) := {T ∈ P(D)|∀x , y ∈ T : x 	= y ⇒ (x , y) ∈ K }.

The set PK (D) can be viewed as a partially ordered set with respect to inclusion of
subsets. Denote by MX the set of all its maximal elements: MX := Max(PK (D);
⊂). Consider the following conditions on X :

1) ∀ T ∈ PK (D)∃M ∈ MX : M ⊃ T .
2) ∀M ∈ MX : M is a Boolean lattice with respect to (∧, ∨, ∗), where ∧ and

∨ play the roles of AND and OR operations respectively, ∗ plays the role
of NOT operation.

Note, that the first condition intuitively can be viewed as a sort of a condition,
that the set of all maximal compatible sets covers the set D. Note, that 0X and 1X

are compatible with any x ∈ D, and thus are present in any M ∈ MX . These two
elements play the roles of minimal and maximal elements respectively for every
maximal compatible set M ∈ MX .

One defines C1 as a full subcategory of C with objects satisfying these two
conditions formulated above.

Proposition 3.5. Let X = (D, E , ⊕) ∈ Ob(C1). One claims, that any two ele-
ments x , y ∈ D, such that x � y∗, are compatible and

inf{x , y} = 0X , sup{x , y} = x ⊕ y.

Proof: Since x � y∗, x is compatible with y∗. There exists a maximal compatible
set, which contains x and y∗. This set is a Boolean lattice, and thus, in particular,
it is invariant under the involution. It means, that x is compatible with y∗∗ = y.

Now, since x and y∗ are compatible, there exists a decomposition of 1X , 1X =
a ⊕ ξ ⊕ η ⊕ b, such that a = inf{x , y∗}, a ⊕ ξ = x , a ⊕ η = y, η ⊕ b = x∗, ξ ⊕
b = y∗, a ⊕ ξ ⊕ η = sup{x , y}. Let us show, that a = 0X . (We do not write here the
brackets using the associativity of ⊕). Indeed, x � y∗ means, that a ⊕ ξ � ξ ⊕ b,
and this implies a � b. At the same time, a and b are the terms of the ⊕-sum in the
decomposition of 1X , and this means they must satisfy a � b∗, or, what is equivalent,
b � a∗. It follows, that a � b � a∗, and thus a � a∗. It means, that inf{a, a∗} = a. On
the other hand, using one of the axioms of a Boolean lattice (the excluded middle),
one obtains inf{a, a∗} = a ∧ a∗ = 0X . It follows, that a = 0X , i.e. inf{x , y∗} = 0X .
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From this, one derives x = a ⊕ ξ = 0X ⊕ ξ = ξ , and y = a ⊕ η = 0X ⊕ η = η.
It follows, that sup{x , y} = a ⊕ ξ ⊕ η = 0X ⊕ x ⊕ y = x ⊕ y. �

Note, that since the formula x ∧ x∗ = 0X is not true for X = I, this object
does not belong to the subcategory C1. The objects W(�, F) and L(H) from the
examples shown above happen to belong to C1.

We are now ready to formulate an abstract-hidden variables problem. Let
X ∈ Ob(C1) and f : X → I be a morphism of C. The abstract-hidden variables
problem for (X, f ) is formulated as follows: construct a measurable space (�, F)
such that there exists a monomorphism µ : X � W(�, F); having constructed
((�, F), µ), find a morphism p : W(�, F) → I, such that p ◦ µ = f . This is
illustrated by the following diagrams:

(3)

(4)

Thus the abstract-hidden variables problem in fact splits into two subproblems.
Note, that the formulation of the first subproblem (3) is similar to the notion of a
cogenerating full subcategory, and the formulation of the second subproblem (4)
reminds the definition of an injective object of a category.

The link between the just formulated problem and physics is established
as follows. Recall that in the introduction we have introduced a notion of the
expected relative frequency and a notation (D, R, �), where D and R are sets and
� is a function �(·|·) : D × R → [0, 1]. There exists a natural partial order on
D: P1 � P2 by definition iff ∀S ∈ R : �(P1|S) ≤ �(P2|S). One can also define
some relation E on D: (P1, P2) ∈ E by definition iff ∀S ∈ R : (�(P1|S) = 1 ⇒
�(P2|S) = 0)&(�(P2|S) = 1 ⇒ �(P1|S) = 0). Assume that for every (P1, P2) ∈
E there exists sup{P1, P2}. It means, that one has a map · ⊕ · : E → D, (P1, P2) �→
P1 ⊕ P2 := sup{P1, P2}. One postulates that the data (D, E, ⊕) defines an object of
C1. Thus with every triple (D, R, �) one associates some X ∈ Ob(C1). Assuming
that every element of D has a representative which corresponds to an indication
(1) ∈ O{A} of some measuring device A ∈ Dwith IA = {0, 1}, one induces from the
compatibility relation onD a relation on D. The latter is thought to be expressed by
Definition 1. For every S ∈ R one has a map �(·|S) : D → [0, 1]. One postulates
that this map defines a morphism fS : X → I. It means that one may consider
an abstract-hidden variables problem for every (X, fS), S ∈ R. Suppose it has a
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solution ((�S , FS), µS , pS) for some S ∈ R. Then the elements of �S are in fact
what is called by physicists the hidden variables, since in practice one tries to find
�S as a subset of a real coordinate space. An element ω ∈ �S in this context is
to be viewed as a reason, which determines the outcome of a measurement in a
given experimental act (i.e. an indication 1 ∈ IA = {0, 1} will take place upon the
measurement of A iff f or (µS)(A(1)) ( ω, where A(1) is the element of D associated
to this indication).

It is worth mentioning that given a triple (D, R, �) one can define similar
structures on R. In particular, there is a partial order on R: S1 � S2 by definition
iff ∀P ∈ D : �(P|S1) ≥ �(P|S2). Note that in quantum mechanics there exists
a natural order-inversing injective map D � R, P �→ min{S ∈ R|�(P|S) = 1}.
The image M of this map, being equipped with a partial order inherited from R,
is in Galois duality with (D; �).

Definition 3.5. An object X of the category C1 is called indeterministic, if for any
measurable space (�, F) there exists no monomorphism µ : X � W(�, F).

In Section 2 we considered an example of a possible experimental data that
leads to a contradiction when one tries to interpret the expected relative frequencies
as probabilities. This may now be viewed as follows: there is an arrow fS : X → I

defined by �(·|S), S ∈ R, where X is an object of C1 associated to (D, R, �).
The experimental data provides the knowledge about the restriction of �(·|S) onto
some finite subset of D. Specializing to the mentioned example, it is possible to
say that even if one assumes the existence of (�S , FS) and of a monomorphism
µS , one cannot construct an arrow pS : W(�S , FS) → I such that pS ◦ µS = fS .

Note, that in case of #D < ∞, D = f or (X ), one can derive a necessary
and sufficient condition on the morphism f for the existence of p. It is neces-
sary to consider all the linear inequalities of the form 0 ≤ p (∩A∈U µ(A)) ≤ 1,
(µ := f or (µ), p := f or (p)), where U runs over all subsets of D. The quantities
p(∩A∈U µ(A)) = f (∧A∈U A), f := f or ( f ), should be interpreted as parameters
whenever U ∈ PK (D) (K denotes the compatibility relation on D), and as inde-
terminates otherwise. An explicit description of the set of all possible values of
parameters, for which this system has a solution, gives the required necessary and
sufficient condition. This type of condition was obtained in Accardi and Fedullo
(1982). It turns out, that in quantum mechanics even the first subproblem in gen-
eral does not have a solution and this is in fact the content of the Kochen–Specker
theorem. It means, that indeterministic objects exist.

4. ATOMIC ELEMENTS

The object X = L(Cn) of the category C1 has some additional properties in
comparison to an abstract object X of C1. Let us state these properties.
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Recall that MX denotes the set MX := Max(PK (D); ⊂), where PK (D) is
the set of subsets of pairwise compatible elements of D := f or (X ). For every
M ∈ MX , denote BX (M) := Min(M×; �), where M× := M\{0X }. There exists
a natural map ρM : M → P(BX (M)),

ρM (x) := {ξ ∈ BX (M)|ξ � x}.
In case of X = L(Cn), this map turns out to be a bijection, i.e. every element of M
is characterized by points, i.e. by a subset of BX (M). Indeed, every M ∈ ML(C

n )

is determined by an orthonormal basis e1, e2, . . . , en in C
n . M is formed by all

elements of the form êI , I ⊂ {1, 2, . . . , n}, where

êI := span C{ei , i ∈ I },
and, by definition, ê∅ is a trivial subspace of C

n . The elements of BL(C
n )(M) are

the projective lines Cei = ê{i}, i = 1, n. Moreover, the operations ∧, ∨, and ∗
correspond to the operations ∩, ∪, and BX (M)\·, i.e., for every x , y ∈ M one has

ρM (x ∧ y) = ρM (x) ∩ ρM (y),

ρM (x ∨ y) = ρM (x) ∪ ρM (y),

ρM (x∗) = BX (M)\ρM (x).

Proposition 4.6. Let M ∈ MX . One claims, that the assumption, that ρM is a
bijection, implies, that

∀x ∈ M ∀ξ ∈ BX (M) : ξ � x or x � ξ ∗.

Proof: If # f or (X ) = 1, then BX (M) = ∅ and the proposition is true. If # f or (X )
> 1, then BX (M) can be represented as a union of two disjoint subsets: BX (M)
= ρM (x) ∪ ρ(x∗). If ξ ∈ ρM (x), then ξ � x . If ξ ∈ ρM (x∗), then ξ � x∗, what is
equivalent to x � ξ ∗. �

Note, that from this proposition one concludes, that ∀ξ , η ∈ BX (M) : ξ 	=
η ⇒ ξ � η∗. Indeed, ξ � η cannot be true for such ξ and η, since this due to the
definition of BX (M) implies ξ = η. The possibility, that is left is ξ � η∗.

Proposition 4.7. For every M, N ∈ MX and for any ξ ∈ M ∩ N, if ξ happens
to belong to BX (M), then ξ belongs to BX (N ) as well.

Proof: Let ξ ∈ BX (M) ∩ N . Take any η ∈ ρN (ξ ). It means, that η � ξ , or, what
is equivalent, ξ ∗ � η∗. Using the previous proposition, for any x ∈ M , one obtains,
that η � ξ � x or x � ξ ∗ � η∗. In particular, it means, that η is compatible with
x , i.e. η ∈ M . Since η � ξ and ξ ∈ BX (M), it follows, that η = ξ . Recalling, that
η ∈ BX (N ), one gets ξ = η ∈ BX (N ). �
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This fact makes the following notation reasonable:

AX := {x ∈ f or (X )|∃M ∈ MX : BX (M) ( x}.
One may write BX (M) in the form BX (M) = AX ∩ M . We shall refer to the
elements of AX as atomic elements. Clearly in the case of X = L(Cn) the set AX

is the set of all projective lines. Note, that for all ξ , η ∈ AX , if ξ happens to be
compatible with η, then either ξ coincides with η, or ξ � η∗.

5. SUFFICIENT CONDITION TO BE INDETERMINISTIC

We shall formulate now a sufficient condition for an object X of C1 to be
indeterministic. Assume, that X is an object which admits a set of atomic elements
AX . Thus, in particular, for any maximal compatible set M ∈ MX the natural map
ρM : M → P(BX (M)), BX (M) = M ∩ AX , is a bijection. Assume, that ∀M ∈
MX : #BX (M) < ∞. Imagine that X admits the existence of a measurable space
(�, F) and a monomorphism µ : X � W(�, F). We describe first a procedure,
which allows to simplify (�, F). It will be convenient to write X̄ for f or (X ) and
m for f or (µ). One defines an equivalence relation ∼ on the set �:

a ∼ b ⇀↽ ∀x ∈ X̄ : (a, b ∈ m(x)) or (a, b 	∈ m(x)). (5)

Note, that this sort of equivalence relation on a topological space was consid-
ered in Sorkin (1991). Note, that because of bijectivity of ρM and to finite-
ness of BX (M) (M runs over MX ), the right hand side in the definition (5)
is equivalent to ∀ξ ∈ AX : (a, b ∈ m(ξ )) or (a, b 	∈ m(ξ )). Thus, in order to es-
tablish a ∼ b it is sufficient to verify the condition of the definition only on
atomic elements. Denote �̂ = �/ ∼, π : � � �̂ – the natural projection. The
map π induces a map P(π ) : P(�) → P(�̂) between the power-sets, and a map
P(P(π )) : P(P(�)) → P(P(�̂)). Denote F̂ := P(P(π ))(F). One proves, that
(�̂, F̂) is again a measurable space. Define a map m̂ from the requirement of
commutativity of the diagram:

where the vertical arrow is induced by P(π ). Claim, that m̂ in fact defines a mor-
phism µ̂ : X → W(�, F), and moreover, this morphism happens to be a monomor-
phism. Thus, one gets another solution of the first part of the hidden variables
problem for X with, perhaps, a more simple set �̂ (i.e. a set of less cardinality).
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Let us prove, that m̂ defines a morphism. For any x , y ∈ X̄ , one has

m̂(x ⊕ y) = P(π )(m(x ⊕ y)) = P(π )(m(x) � m(y))

= {π (ω)|ω ∈ m(x) � m(y)} = {π (ω)|ω ∈ m(x)} � {π (ω)|ω ∈ m(y)}
= P(π )(m(x)) ⊕ P(π )(m(y)) = m̂(x) ⊕ m̂(y).

For m(1X ) one has

m̂(1X ) = P(π )(m(1X )) = P(π )(�) = {π (ω)|ω ∈ �} = �̂ = 1W(�̂,F̂ ).

Thus, m̂ defines some morphism µ̂ : X → W(�̂, F̂). To prove, that this is in fact
a monomorphism, one has to show, that m̂ is injective. Take any x , y, such that
x 	= y. One has

m̂(x) = {π (ω)|ω ∈ m(x)},
m̂(y) = {π (ω)|ω ∈ m(y)}.

Since µ is a monomorphism, m(x) and m(y) are disjoint. One has to show, that
m̂(x) and m̂(y) will be disjoint as well. Imagine the contrary: let m̂(x) ∩ m̂(y) 	= ∅.
Then there exist ω1 ∈ m(x) and ω2 ∈ m(y), such that π (ω1) = π (ω2), i.e. ω1 ∼
ω2. From the definition of the equivalence between the points of �, one ob-
tains, that since m(x) ( ω1, it contains both points ω1 and ω2, m(x) ( ω1, ω2.
But this, since ω2 ∈ m(y), contradicts the disjointness of m(x) and m(y). This
contradiction implies, that m̂ has to be injective, and it follows, that µ̂ is a
monomorphism.

We shall now establish an isomorphism between W(�̂, F̂) and some other
object of C of the form W(Q, FQ). Denote

�X := {s : MX → AX |∀M : s(M) ∈ BX (M)}
(Recall that the notation AX was defined in the previous section and it means the
set of all atomic elements.) Imagine, that one takes an arbitrary s ∈ �X and an
arbitrary maximal-compatible subset M ∈ MX . Then one has s(M) ∈ AX ⊂ X̄ ,
and it is possible to apply a map m : X̄ → F . One gets m(s(M)) ∈ F . We introduce
now the following notations:

gµ
s := ⋂

M∈MX
m(s(M)),

Qµ := {
s ∈ �X

∣∣gµ
s 	= ∅}

.

Note, that Qµ ⊂ �X . We shall write Q instead of Qµ not to overload the notations
(thus µ is viewed as fixed). There exists a natural map � : Q → �̂, s �→ π (

◦
ω),

where
◦
ω is an arbitrary chosen element of gµ

s ⊂ �. Let us prove that this map is well
defined. One has to show, that any two points ω1, ω2 ∈ gµ

s are equivalent, i.e., for
all ξ ∈ AX one must have either ω1, ω2 ∈ m(ξ ), or ω1, ω2 	∈ m(ξ ). Take arbitrary
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ξ ∈ AX . Then ξ ∈ BX (M), where M is some element of MX . Assume that one of
the points, say ω1, belongs to m(ξ ). Then s(M) = ξ , since otherwise s(M) � ξ ∗,
what implies, that m(s(M)) and m(ξ ) are disjoint, implying a contradiction to ω1 ∈
gµ

s ⊂ m(s(M)). Thus s(M) = ξ and ω2 ∈ gµ
s ⊂ m(s(M)) = m(ξ ). This proves,

that any two points of gµ
s are equivalent. Note now, that � is not only well defined,

but it is also, in fact, a bijection, � : Q
∼→ �̂. Indeed, for every M ∈ MX one

has a decomposition of � into a union of disjoint subsets (in such a case one
writes � instead of ∪): � = ∑

ξ∈BX (M) m(ξ ). It follows, that � = ∑
s∈�X

gµ
s . One

can restrict the summation here only to s ∈ Q. It follows, that �̂ = P(π )(�) =∑
s∈Q P(π )(gµ

s ) (note, that any two points belonging to different gµ
s sets are not

equivalent). Since the map π sends all the points of a set gµ
s into one and the

same point in �̂, P(π )(gµ
s ) are the one-point sets of the form {�(s)}. Thus, �̂ =∑

s∈Q{�(s)}. It follows, that � establishes Q
∼→ �̂.

Since � is a bijection, there exists �−1, and one has the maps P(�−1) :
P(�̂) → P(Q) and P(P(�−1)) : P(P(�̂)) → P(P(Q)). The latter map allows
to define a σ -algebra on Q, FQ := P(P(�−1))(F̂). Thus, one gets a measurable
space (Q, FQ) and an object W(Q, FQ) of the category C. Define a map lQ from
the commutative diagram:

where the vertical arrow is induced byP(�−1). It defines an isomorphism W(�, F)
∼→ W(Q, FQ). Since m defines a monomorphism µ : X � W(�, F), the map lQ

will define some monomorphism λQ , f or (λQ) = lQ . It means that one gets a
solution λQ : X � W(Q, FQ) of the first subproblem of the hidden variables
problem.

Proposition 5.8. For any X ∈ Ob(C), M ∈ MX , ξ ∈ BX (M), the map lQ =
f or (λQ) acts according to the formula:

f or (λQ)(ξ ) = {s ∈ Q|s(M) = ξ}.

Proof: According to the definitions,

lQ(ξ ) = P(�−1)(m̂(ξ )) = P(�−1)(P(π )(m(ξ ))).
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Expressing m(ξ ) as a union of disjoint sets
∑

s∈Q:s(M)=ξ gµ
s , one deduces

lQ(ξ ) = P(�−1)

({
π (ω)|ω ∈

∑
s∈Q:s(M)=ξ

gµ
s

})

= P(�−1)

( ∑
s∈Q:s(M)=ξ

{π (ω)|ω ∈ gµ
s }

)
.

Noting, that in the latter sum the expression π (ω) may be replaced by �(s), one
deduces:

lQ(ξ ) = P(�−1)(P(�)({s ∈ Q|s(M) = ξ})) = {s ∈ Q|s(M) = ξ}.
�

Note, that it may happen that for some ξ ∈ AX one has ξ ∈ M ∩ N for some
M, N ∈ MX . In this case one must have an equality

{s ∈ Q|s(M) = ξ} = {s ∈ Q|s(N ) = ξ},
which can be viewed as a condition on the set Q.

Note, that for an arbitrary element a the following formula is true:

f or (λQ)(a) = {s ∈ Q|s(M) � a},
where M ∈ MX is any subset containing a. Indeed, after having chosen M ( a,
one can uniquely express a in the form a = ⊕ξ∈BX (M),ξ � aξ . Then the mentioned
formula follows from the bijectivity of the map ρM and the fact, that f or (λQ)
sends ⊕-sums into disjoint unions.

Note the following. If s ∈ Q, then for any M, N ∈ MX it is impossible to
have s(M) � s(N )∗. Indeed, if this were the case, the sets m(s(M)) and m(s(N ))
have to be disjoint, what implies, that gµ

s = ∅ and thus s 	∈ Q. Denote

DX := {s ∈ �X |∀M, N : ¬(s(M) � s(N )∗)}.
One has: Q ⊂ DX . Recall, that Q in fact depends on µ, and one just omits µ

in the notation (Q = Qµ). At the same time, DX is defined without reference to
µ. Note that for any Q1 ⊂ DX one has the coincidence {s ∈ Q1 | s(M) = ξ} =
{s ∈ Q1|s(N ) = ξ}, where ξ is an arbitrary atomic element from M ∩ N , M, N
∈ MX . Indeed, take any s ∈ Q1 such that s(M) = ξ . Then one has: ξ , s(N ) ∈
BX (N ) & ¬(s(N ) � ξ ∗). This implies that s(N ) = ξ and thus the coincidence
mentioned does take place.

Since Q ⊂ DX , one immediately deduces a sufficient condition for the solu-
tion of the first part of the hidden-variables problem not to exist: this is DX = ∅.
In practice, in order to show that DX is empty, it might be more convenient to try
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to do the following. For an arbitrary U ⊂ MX denote

�X (U ) := {s : U → AX |∀M : s(M) ∈ BX (M)},
DX (U ) := {t ∈ �X (U )|∀M, N ∈ U : ¬(t(M) � t(N )∗)}.

Note, that DX = DX (MX ). It follows from the formula

DX (U1 ∪ U2) = {t ∈ �X (U1 ∪ U2)|
1)t |U1 ∈ DX (U1), 2)t |U2 ∈ DX (U2),

3)∀M1 ∈ U1 ∀M2 ∈ U2 : ¬(t(M1) � t(M2)∗)},
that in order to show that DX = ∅, it is sufficient to show that DX (U ) = ∅ for
some U . Thus we obtain the following theorem:

Theorem 5.1. Let X be an object of C1, such that for every M ∈ MX the num-
ber of elements in BX (M) is finite and the natural map ρM : M → P(BX (M))
is bijective. If there exists U ⊂ MX such that DX (U ) = ∅, then this object is
indeterministic.

6. AN EXAMPLE OF AN INDETERMINISTIC OBJECT

We shall construct now an example of the case when the situation DX (U ) = ∅
described in the previous section occurs. Namely, the object X will be of the form
X = L(H), H , C

n (n is some natural number), and we shall describe a finite
set U of maximal compatible subsets, such that DX (U ) = ∅. The general idea
of this example is induced by Mermin (1993), although now the corresponding
construction comes from a different context. Note, that the results of the mentioned
work were also used in Kernaghan and Peres (1995) to derive a simple proof of
“no-hidden variables” theorem in nonrelativistic quantum mechanics. We shall
need some auxiliary construction. Let G denote a group, which is a direct product
of several (say, m) copies of Z2: G := Z2 × · · · × Z2 (m times). Let us view Z2 as
a group consisting of 0 and 1 with a group operation written additively (addition
modulo 2). Consider a graph

(6)
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This graph is a completely connected nonoriented graph with 4 vertices. The
vertices are denoted as e, f , g, and h. Denote the set of vertices as V and the set
of edges as E := {ε ∈ P(V )|#ε = 2}. The zero element of G will be denoted as
0 := (0, 0, . . . , 0) and g will denote an element g := (1, 1, . . . , 1). Every label of

an edge on this graph is unique and is of the form
ω
ϕ or

ω

ψ , where ω is one of the
numbers 1, 2, or 3. So far ϕ and ψ are just two formal symbols. Note, that for every
vertex the edges, those are associated to it, have different numbers. This allows to
assign to every vertex the following formal expressions: e �→ ϕ ⊗ ψ ⊗ ψ , f �→
ψ ⊗ ϕ ⊗ ψ , g �→ ψ ⊗ ψ ⊗ ϕ, h �→ ϕ ⊗ ϕ ⊗ ϕ. The general rule should be clear
from the figure of the graph (rf. (6)): one takes a vertex and considers all the
edges associated to it. The expression with ⊗⊗ is constructed out of the symbols,
assigned to the edges, and the numbers are interpreted as the positions of the
corresponding symbols.

Let us take now an arbitrary orthonormal basis {ϕα}α in C
2m

indexed by the
elements of the group G, α ∈ G. Define a map v : Z2 × Z2 → C

×, v(x , y) = −1
if (x , y) = (1, 1) and v(x , y) = 1 otherwise. This map has the following properties:
v(x , y) = v(y, x), v(x , y + z) = v(x , y)v(x , z), v(x , 1 + x) ≡ 1,

∑
x v(x , y)v

(x , z) = 2 δy,z (here x , y and z are variables running over Z2). For every α, β ∈ G,
α = (α1, . . . , αm), β = (β1, . . . , βm), denote uβ

α := 1
2m/2 v(α1, β1) · · · v(αm , βm).

Thus, one gets a matrix u = ‖uβ
α‖α,β with the following properties:

uβ
α = uα

β ,

uξ
α+βuη

β = uξ
αuξ+η

β ,

uβ+α
α = uβ+g

α ,∑
α∈G

uβ
αuγ

α = δβ,γ ,

where α, β, γ , ξ , and η run over G. In particular, the latter formula allows to define
another orthonormal basis {ψλ}λ∈G in C

2m
by the formula: ψλ = ∑

α∈G uα
λϕα . Note,

that ϕα = ∑
λ∈G uλ

αψλ.
We shall describe now some elements in H := (C2m

)⊗3. Denote Ev := {ε ∈
E |ε ( v}, where v ∈ V . With every vertex v ∈ V and every function σ : Ev → G,
one associates a function �v

σ (·) ∈ H. It is best to illustrate the general formula for
�v

σ (·) by an example with v = e. Recall that one has assigned to this vertex a
formal expression of the form ϕ ⊗ ψ ⊗ ψ . Take σ : Ee → G. The function �e

σ (·)
is defined by the formula

�e
σ (·) := ϕσ (eh) ⊗ ψσ (eg) ⊗ ψσ (e f ),

where one writes for short eh, eg, and e f instead of {e, h}, {e, g}, and {e, f }
respectively to denote the edges associated to the vertex e (note that eh has
the number 1, eg has the number 2 and e f has the number 3). Let us point
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out, that the function �e
σ (·) has a unit norm and that the functions �e

σ (·) and
�e

σ ′(·) corresponding to different functions σ and σ ′, are orthogonal. The func-
tions, corresponding to the other three vertices, are defined in a similar way.
Note, that �v

σ (·) and �u
σ1(·) corresponding to different u, v ∈ V , (σ : Ev → G,

σ1 : Eu → G), will be orthogonal iff σ (uv) 	= σ1(uv). Denote the set of all maps
from Ev to G as Fv . Since #Fv = (2m)3 = dimH, one gets an orthonormal ba-
sis {�v

σ (·)}σ∈Fv in H defined for every vertex v ∈ V . Denote by Mv the max-
imal compatible set in X = L(H), corresponding to the basis {�v

σ (·)}σ∈Fv , i.e.
BX (Mv ) = {C�v

σ (·)}σ∈Fv (recall that the atomic elements in L(H) are projective
lines in H).

We shall now define another orthonormal basis inH and then introduce a max-
imal compatible set M̂ associated to it. After that it will be shown, that for U0 :=
�v∈V {Mv} one has DX (U0) 	= ∅, but for U := U0 � {M̂} one has DX (U ) = ∅
(X = L(H)). Denote

� :=
{

π : V → G|
∑
v∈V

π (v) = g

}
.

Thus, if one has a π ∈ � and knows its values on three of the vertices, the value on
the fourth vertex is automatically determined. It follows that #� = (2m)3 = dimH.
We shall construct a set of pairwise orthogonal projective lines in H indexed by
elements of �. Let us take an ordered pair of vertices (u, v), u 	= v . Denote the
other two elements of V as z and w . Associate to every such pair (u, v) and every
π ∈ � a function

F (u→v)
π (·) :=

∑
σ (·)∈Fu

Aπ (z),π (w)(σ (uz), σ (uw))δσ (uv)+σ (uz)+σ (uw),π (u)�
u
σ (·), (7)

where Ax , y(ξ , η) := uy+η
x uy+η

ξ . Note, that the expression Ax , y(ξ , η) is symmetric
with respect to permutation (x , ξ ) →← (y, η). Indeed, using the properties of u, one
deduces:

Ax , y(ξ , η) = uy+η
x uy+η

ξ = uy+η

(x+ξ )+ξ uy+η

ξ = uy+η

x+ξ u0
ξ .

Noting that, uξ+η

0 uξ

0 = uξ+η

0+0uξ

0 = uξ+η

0 u(ξ+η)+ξ

0 = uξ+η

0 uη

0 and taking into account,

that by definition all the elements of u are not equal to zero, one gets uξ

0 = uη

0 . It
follows, that

Ax , y(ξ , η) = ux+ξ
y+ηu0

η = Ay,x (η, ξ ).

Proposition 6.9.

1) The projective line CF (u→v)
π (·) does not depend upon the choice of the ordered

pair (u, v).
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2) CF (u→v)
π (·) ⊥ CF (u1→v1)

π1(·) iff π (·) 	= π1(·).
3) CF (u→v)

π (·) ⊥ C�w
σ (·) iff

∑
ε∈Ew

σ (ε) 	= π (w).

Proof:

1) Take arbitrary π ∈ �. Denote π (e) = a, π ( f ) = b, π (g) = c and π (h) =
d. Note, that a + b + c + d = g. We shall show, that CF (h→g)

π (·) = CF (h→ f )
π (·)

= CF ( f →h)
π (·) . The rest is similar. The functions F (h→g)

π (·) , F (h→ f )
π (·) and F ( f →h)

π (·)
defined by (7) are of the form:

F (h→g)
π (·) =

∑
α,β∈G

ub+β
a ub+β

α ϕα ⊗ ϕβ ⊗ ϕd+α+β ,

F (h→ f )
π (·) =

∑
α,γ

uc+γ
a uc+γ

α ϕα ⊗ ϕd+α+γ ⊗ ϕγ ,

F ( f →h)
π (·) =

∑
ξ ,ζ

ua+ζ
c ua+ζ

ξ ψξ ⊗ ϕb+ξ+ζ ⊗ ψζ .

Consider F (h→g)
π (·) . Introducing a new index for summation γ = d +

α + β and expressing β as β = d + α + γ (recall, that ∀ξ ∈ G : ξ + ξ =
0), one deduces

F (h→g)
π (·) =

∑
α,γ

ub+(d+α+γ )
a ub+(d+α+γ )

α ϕα ⊗ ϕd+α+γ ⊗ ϕγ .

Taking into account that b + d = g + a + c and using the properties of
the matrix u, one deduces:

ub+d+α+γ
a ub+d+α+γ

α = ug+a+c+α+γ
a ug+a+c+α+γ

α

= ug+g+c+α+γ
a ug+a+c+g+γ

α = uc+α+γ
a ua+c+γ

α

= ua
(c+γ )+αua+c+γ

α = ua
c+γ ua+(a+c+γ )

α

= ua
c+γ uc+γ

α = uc+γ
a uc+γ

α .

It follows, that CF (h→g)
π (·) coincides with CF (h→ f )

π (·) .

Let us show now, that CF (h→g)
π (·) = CF ( f →h)

π (·) . Substituting ϕα = ∑
ξ

uξ
αψξ and ϕd+α+β = ∑

ζ uζ

d+α+βψζ in the corresponding expression for

F (h→g)
π (·) , one obtains

F (h→g)
π (·) =

∑
α,β,ξ ,ζ

ub+β
a ub+β

α uξ
αuζ

d+α+β ψξ ⊗ ϕβ ⊗ ψζ .

Using the properties of u, one deduces uξ
αuζ

d+α+β = uζ

(d+β)+αuξ
α =

uζ

d+βuζ+ξ
α . Substituting this expression into the previous formula and
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performing the summation over α, one gets

F (h→g)
π (·) =

∑
β,ξ ,ζ

ub+β
a uζ

d+βδb+β,ζ+ξψξ ⊗ ϕβ ⊗ ψζ

=
∑
ξ ,ζ

uξ+ζ
a uζ

g+a+c+ξ+ζψξ ⊗ ϕb+ξ+ζ ⊗ ψζ .

Using the properties of u, one may transform the coefficients in the terms
of latter sum as follows:

uξ+ζ
a uζ

g+a+c+ξ+ζ = uξ+ζ
a uζ

g+a+c+ξ+g

= uζ

(c+ξ )+auξ+ζ
a = uζ

c+ξ uξ
a = uζ

c+ξ ua
ξ = uζ

c uζ+a
ξ .

Note, that ua
c uζ

c = u(a+ζ )+ζ
c uζ

c = ua+ζ
c uζ

c+c = ua+ζ
c uζ

0 . It means, that
uζ

c uζ+a
ξ = ua+ζ

c uζ

0 ua+ζ
ξ /ua

c . Since uζ

0 is a constant, one concludes, that

CF (h→g)
π (·) = CF ( f →h)

π (·) .

2) Let us calculate the inner product of F (h→g)
π (·) and F (h→g)

π1(·) . Denote a1 = π1(e),
b1 = π1( f ), c1 = π1(g), d1 = π1(h). Note, that a1 + b1 + c1 + d1 = g.
Taking into account, that (ϕα , ϕβ) = δα,β , one deduces:(

F (h→g)
π (·) , F (h→g)

π1(·)
) =

∑
α,β,α1,β1

∗
u

b+β

a

∗
u

b+β

α ub1+β1
a1

ub1+β1
α1

×

δα,α1δβ,β1δd+α+β,d1+α1+β1 =
∑
α,β

∗
u

b+β

a

∗
u

b+β

α ub1+β
a1

ub1+β
α δd+α+β,d1+α+β

=
∑

β

∗
u

b+β

a ub1+β
a1

δb+β,b1+βδd,d1

= δb,b1δd,d1

∑
β

∗
u

b+β

a ub+β
a1

= δa,a1δb,b1δd,d1 .

3) We show that C�h
σ (·) ⊥ CF (u→v)

π (·) . The rest is similar. Let us calculate the

inner product of F (h→g)
π (·) and �h

σ (·):(
F (h→g)

π (·) , �h
σ (·)

)
=

∑
α,β

uπ ( f )+β

π (e) uπ ( f )+β
α δα,σ (he)δβ,σ (h f )δπ (h)+α+β,σ (hg)

= uπ ( f )+σ (h f )
π (e) uπ (g)+σ (h f )

σ (he) δπ (h)+σ (he)+σ (h f ),σ (hg).

Since uη

ξ is never zero, the statement follows. �

The latter proposition means, that one has a set of n = dimH pairwise or-
thogonal projective lines in H. Denote the corresponding maximal compatible
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set in X = L(H) as M̂ . Recall, that U0 := �v∈V {Mv} and U := U0 � {M̂}. Let
us show, that DX (U0) 	= ∅, but DX (U ) = ∅. Denote by Func(E , G) the set of all
maps from E to G. There is a natural map χ : Func(E , G) → DX (U0), τ �→ tτ ,
tτ (Mv ) = C�v

τ |Ev
. This map is in fact a bijection. Indeed, take any s ∈ DX (U0). The

values s(Mu) and s(Mv ) are of the form s(Mu) = C�u
σ (·), s(Mv ) = C�v

σ1(·), where
σ and σ1 are some elements of Fu and Fv respectively. One has ¬(s(Mv ) � s(Mu)∗).
This reduces to ¬(C�u

σ (·) ⊥ C�σ1(·)), i.e. σ (uv) = σ1(uv). This allows to de-
fine a map χ̃ : DX (U0) → Func(E , G) by χ̃ (s)(uv) := σ (uv) = σ1(uv). Then χ̃

will be an inverse map to χ . In particular, since Func(E , G) 	= ∅, it means that
DX (U0) 	= ∅.

Let us now show, that DX (U0 ∪ {M̂}) = ∅. DX
(
U0 ∪ {M̂}) should consist of

all functions defined on U0 ∪ {M̂} with values in AX , which satisfy the conditions:
t |U0 ∈ DX (U0) and ∀v ∈ V : ¬(t(Mv ) � t(M̂)∗). Imagine, that DX (U0 ∪ {M̂}) 	=
∅. Then one can take t ∈ DX

(
U0 ∪ {M̂}). Set τ = χ−1(t |U0 ) and define π (·) from

t(M̂) = CF (u→v)
π (·) (u, v are any elements of V , u 	= v). From the proposition it

follows that

∀v ∈ V : π (v) =
∑
ε∈Ev

τ |Ev (ε).

Take the sum over all v ∈ V . From the definition of � one has
∑

v∈V π (v) = g.
On the other hand, ∑

v∈V

π (v) =
∑
v∈V

∑
ε∈Ev

τ |Ev (ε) = 2
∑
ε∈E

τ (ε).

Taking into account that ∀x ∈ G : x + x = 0 ≡ (0, 0, . . . , 0), one arrives at a con-
tradiction of the form g = 0. Hence: DX (U ) = ∅. It follows, that X = L(H) satis-
fies the sufficient condition for an indeterministic object formulated in the theorem.

7. SEMICLASSICAL CASE

Let us analyze now the passage to the semiclassical limit in the context of the
hidden variables problem. Consider the example of the previous section. Assume
for simplicity, that G = Z2 and thus H = C

8. In this case #� = 8 and ∀v ∈ V :
#Fv = 8. One has five orthonormal bases in C

8: {Fπ (·)}π∈� and {�v
σ (·)}σ∈Fv , (v ∈ V ,

#V = 4), where Fπ (·) ≡ F (h→g)
π (·) . It was shown that these data induce a sufficient

condition formulated in the theorem for the object L(H) to be indeterministic.
This fact may be viewed as follows. Choose four functions σv ∈ Fv , v ∈ V , and
assume, that for all u, v ∈ V , u 	= v , the function �u

σu (·) is not orthogonal to �v
σv (·).

Then every function Fπ (·) is orthogonal to at least one of �v
σv (·).

Let us analyze this fact in a more general way. Consider a Hilbert space C
n ,

n ∈ N. There are four orthonormal bases {ei }n
i=1, { f j }n

j=1, {gk}n
k=1 and {hl}n

l=1. The
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set of points

" := {(i, j, k, l)|{ei , f j , gk , hl are pairwise nonorthogonal}
is not empty. Then, the situation one encounters, in particular, means the following:
there exists a nonzero element � ∈ C

n , such that for any (i, j, k, l) ∈ " the vector
� happens to be orthogonal to at least one of the four vectors ei , f j , gk , or hl .

Consider a completely connected nonoriented graph with four vertices de-
noted by symbols e, f , g, and h. We shall associate to every edge some decom-
position of C

n into orthogonal sum of subspaces. Let us illustrate this for the
edge e f . Denote n := {1, 2, . . . , n}. Let I and J be some subsets in n. One calls
the pair (I , J ) coherent, if êI = f̂ J . One calls a coherent pair (I , J ) irreducible,
if I1 ⊂ I &J1 ⊂ J &̂eI1 = f̂ J1 implies I1 = I & J1 = J or I1 = ∅ & J1 = ∅. Note,
that if (I , J ) is coherent, then (n\I , n\J ) is also coherent. Note, that if (I1, J1) and
(I2, J2) are two irreducible coherent pairs, then there are only two possibilities:
either I1 = I2&J1 = J2, or I1 ∩ I2 = ∅&J1 ∩ J2 = ∅. This follows from the for-
mulas êI1 ∩ êI2 = êI1∩I2 , f̂ J1 ∩ f̂ J2 = f̂ J1∩J2 . It follows, that there exists a uniquely
defined family {(Iα , Jα)}α , α runs over some index set Aef , of irreducible coherent
pairs, such that {Iα}α and {Jα}α are partitions of n. Denote Uα := êIα = f̂ Jα

. One
has C

n = ⊕αUα . This will be the decomposition associated to the edge e f . The
decompositions associated to other edges are constructed in a similar way, and one
arrives at the graph of the form:

(8)
with

C
n = ⊕αUα = ⊕β Vβ = ⊕γ Wγ = ⊕ξ Xξ = ⊕ηYη = ⊕ζ Zζ .

The index set corresponding to the decomposition of C
n associated to the edge uv

will be denoted as Auv . Note now, that if i ∈ Iα , j ∈ Jα′ and α 	= α′, then ei ⊥ f j .
Indeed, f j ∈ f̂ Jα′ = êIα′ ⊥ êIα ( ei . It means that for such i and j there exists no
point of " of the form (i, j, ·, ·). Similar statements can be formulated, of course,
for other pairs of bases. Denote ẽα,γ ,ξ := Uα ∩ Wγ ∩ Xξ , f̃α,β,η := Uα ∩ Vβ ∩ Yη,
g̃β,γ ,ζ := Vβ ∩ Wγ ∩ Zζ and h̃ξ ,η,ζ := Xξ ∩ Yη ∩ Zζ . Consider a set

"̃ := {(α, β, γ , ξ , η, ζ )|̃eα,γ ,ξ , f̃α,β,η, g̃β,γ ,ζ , h̃ξ ,η,ζ 	= {0}}.
It follows, that there is a natural map " → "̃. In particular, " 	= ∅ implies "̃ 	= ∅.
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Let us return for a moment to the example when n = 8 and the bases {ei }n
i=1,

{ f j }n
j=1, {gk}n

k=1, {hl}n
l=1 are of the form {�v

σ (·)}µ∈Fv , v = e, f, g, h. In this case,
an orthogonal decomposition associated to every edge contains two terms, and the
triple intersections of subspaces, associated to every vertex are one-dimensional.
It means, that the property of Fπ (·) can be reformulated as follows: for every
(α, β, γ , ξ , η, ζ ) ∈ "̃ the orthogonal projection of Fπ (·) onto at least one of sub-
spaces ẽα,γ ,ξ , f̃α,β,η, g̃β,γ ,ζ or h̃ξ ,η,ζ is zero.

Now look at the general case. Imagine, that one would like to show that for
any � 	= 0 there exists (i, j, k, l) ∈ ", such that � is not orthogonal to all the four
vectors ei , f j , gk , and hl . In particular, there should exist (α, β, γ , ξ , η, ζ ) ∈ "̃,
such that � has a nonzero orthogonal projection onto all the four subspaces ẽα,γ ,ξ ,
f̃α,β,η, g̃β,γ ,ζ , h̃ξ ,η,ζ . It is possible to give a general reason, why such a situation
should always take place in the classical case, and why it may not take place
in the quantum case: this is “noncommutativity.” Observe the following. Let π̂L

denote the orthogonal projector onto a linear subspace L ⊂ C
n . Thus one has

the orthogonal projectors π̂Uα
, π̂Vβ

, π̂Wγ
, π̂Xξ

, π̂Yη
, π̂Zζ

. Note, that the projectors
associated to one and the same vertex (rf. (8)), commute. Indeed, for example,
[π̂Uα

, π̂Vβ
] = 0, since both Uα and Vβ can be expressed as some linear spans over

some ei and ei ⊥ ei ′ , i 	= i ′. On the other hand, if the projectors correspond to
the edges, which have no common vertices, there is no general reason for them to
commute. For example, in general, [π̂Uα

, π̂Zζ
] 	= 0.

Imagine now, that all the mentioned projectors do commute. Take any � 	= 0
and consider the decomposition:

� =
∑

α,β,γ ,ξ ,η,ζ

π̂Uα
π̂Vβ

π̂Wγ
π̂Xξ

π̂Yη
π̂Zζ

�.

There exists at least one (α, β, γ , ξ , η, ζ ), such that the corresponding term in
this sum is not zero. Since, due to the commutativity of the projectors, this term
belongs to the intersection ẽα,γ ,ξ ∩ f̃α,β,η ∩ g̃β,γ ,ζ ∩ h̃ξ ,η,ζ , one has, in particular,
(α, β, γ , ξ , η, ζ ) ∈ "̃. Moreover, using the commutativity of the projectors, one
deduces, that the orthogonal projection of � on each of the subspaces ẽα,γ ,ξ , f̃α,β,η,
g̃β,γ ,ζ or h̃ξ ,η,ζ , is not zero. Indeed, for example, for ẽα,γ ,ξ one has

π̂Uα
π̂Vβ

π̂Wγ
π̂Xξ

π̂Yη
π̂Zζ

� = π̂Vβ
π̂Yη

π̂Zζ
[π̂Uα∩Wγ ∩Xξ

�] 	= 0,

and thus π̂Uα∩Wγ ∩Xξ
� 	= 0 (recall that ẽα,γ ,ξ = Uα ∩ Wγ ∩ Xξ ).

This observation leads to the idea of how to treat the passage to the semiclassi-
cal limit. Let us imagine, that the subspaces Uα , . . . , Zζ start to depend upon some
formal small parameter ε → 0: Uα = Uα(ε), . . . , Zζ = Zζ (ε). The dimension n
of C

n can also change with ε, n = n(ε). We shall omit the argument ε in what
follows. Assume, that the commutators between the projectors can be nonzero, but
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they are small as ε → 0:

[π̂Uα
, π̂Zζ

] = O(ε), [π̂Vβ
, π̂Yη

] = O(ε), [π̂Wγ
, π̂Xξ

] = O(ε). (9)

(The estimate O(ε) is to be understood in the sense of the operator norm). The
rest of the commutators are equal to zero precisely. Assume also, that the num-
ber of terms in the decompositions C

n = ⊕αUα = · · · = ⊕ζ Zζ , remains to be of
order O(1) as ε → 0 (i.e., in general, Auv also changes with ε, Auv = Auv (ε),
and #Auv (ε) = O(1)). Take now any �ε ∈ C

n such, that ‖�ε‖ = O(1), ε → 0.
Consider the decomposition:

�ε =
∑

α,β,γ ,ξ ,η,ζ

π̂Uα
π̂Vβ

π̂Wγ
π̂Xξ

π̂Yη
π̂Zζ

�ε.

Since the left-hand side of this equation is of order O(1) and in the right-hand
side the number of terms is of order O(1) as ε → 0, for every ε one can choose
(α(ε), . . . , ζ (ε)) in such a way, that

π̂Uα(ε) π̂Vβ(ε)
π̂Wγ (ε) π̂Xξ (ε)

π̂Yη(ε) π̂Zζ (ε)
�ε = O(1).

From this one derives, that the projection of �ε onto the triple intersections of
subspaces of the form Uα(ε) ∩ Vβ(ε) ∩ Xξ (ε), . . . , are nonzero. Indeed, let us show
this for the case of Uα(ε) ∩ Vβ(ε) ∩ Xξ (ε). Using the commutation relations between
the projectors, one obtains:

π̂Uα(ε) π̂Vβ(ε)
π̂Wγ (ε) π̂Xξ (ε)

π̂Yη(ε) π̂Zζ (ε)
�ε

= π̂Wγ (ε) π̂Yη(ε) π̂Zζ (ε)
[π̂Uα(ε)∩Vβ(ε)∩Xξ (ε)

�ε] + O(ε).

(Note, that the number of times, that is necessary to apply the formulas (9), is equal
to O(1).) Since the left-hand side of this equation is of order O(1), the expression in
the square brackets in the right-hand side should also be of order O(1). Note, that in
particular this means, that Uα(ε) ∩ Vβ(ε) ∩ Xξ (ε) is not trivial as ε → 0. Similarly,
one proves, that the projections of �ε on other triple intersections, namely on
Uα(ε) ∩ Wγ (ε) ∩ Yη(ε), Vβ(ε) ∩ Wγ (ε) ∩ Zζ (ε) and Xα(ε) ∩ Yη(ε) ∩ Zζ (ε), are of order
O(1). In particular, this means that all this triple intersections are not trivial and
thus (α(ε), . . . , ζ (ε)) falls into the corresponding set "̃ = "̃(ε).

As one approaches the classical situation, there should appear a solution of
the first part of the hidden variables problem. It means, that there should appear a
space on which one can try to define a probability measure to construct a model of
the experiment (this is the second part of the hidden variables problem). In general,
such a probability measure need not exist. This is similar to the following fact.
The Weyl symbol of a density matrix for a quantum system is a real distribution
on a phase space of the associated classical system. It may be viewed as an analog
of a phase-space density distribution in classical statistical mechanics. In general
it is not positively defined, but one can prove (under some assumptions), that in
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the classical limit the Lebesgue measure of the set of points where it is negative,
disappears. It means, that in the classical limit one finally has a measurable space
and a probability measure.

Note, that one may naturally imitate the passage to the semiclassical limit with
an abstract family of objects {Xε}ε of C1. In particular, to construct an analog of
"̃(ε), one has to consider for every given M, N ∈ MXε

, M 	= N , a decomposition
of 1Xε

into an ⊕-sum with terms given by the elements of Min((M ∩ N )\{0Xε
}; �),

where � is the standard partial order. Since the notion of the passage to such a
limit refers to the two problems, namely, the existence of a measurable space
and the existence of a probability measure, quantization should also be viewed
as a compound notion: there is a problem of ‘twisting’ the multiplication of the
classical observables (the twisted product should be consistent with the equation
for an analog of the classical probability distribution), and a problem of “distorting”
the underlying measurable space itself.
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